DRAFT
Archaeological Testing Report for the
Sausalito-Marin City Sanitary District
Headworks and Facility Upgrade Project,
Fort Baker, Marin County, California

PEPC 40411
PEPS 40411PWR-1979-13-CA-06 (GOGA)

Photograph of Fort Baker and Sausalito, including the Project area, taken in 1925.

Prepared for:
John Bock
Derek Farmer
Tetra Tech
1999 Harrison Street, Suite 500
Oakland, CA 94612

Prepared by:
Allen G. Pastron
Michelle Touton Staley
Archeo-Tec
5283 Broadway
Oakland, CA 94618

September 2013
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Project Description</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>The Sailors Cemetery</td>
<td>7</td>
</tr>
<tr>
<td>History of Land Use and Occupation of the Project Site</td>
<td>8</td>
</tr>
<tr>
<td>Previous Studies in the Vicinity of the Project Area</td>
<td>13</td>
</tr>
<tr>
<td>Archaeological Studies</td>
<td>13</td>
</tr>
<tr>
<td>Geotechnical Studies</td>
<td>14</td>
</tr>
<tr>
<td>Testing Program</td>
<td>15</td>
</tr>
<tr>
<td>Personnel Qualifications</td>
<td>15</td>
</tr>
<tr>
<td>Testing Area</td>
<td>15</td>
</tr>
<tr>
<td>Testing Methods</td>
<td>16</td>
</tr>
<tr>
<td>Results</td>
<td>19</td>
</tr>
<tr>
<td>Recommendations</td>
<td>23</td>
</tr>
<tr>
<td>Disposition of Testing Materials</td>
<td>23</td>
</tr>
<tr>
<td>Works Cited</td>
<td>25</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Project Location Map ... 3
Figure 2. Project Site Map with Area of Suspected Historic Cemetery .. 4
Figure 3. Area of Potential Effects (APE) Map ... 5
Figure 4. 1850 U.S. Coast Survey Map Detail .. 9
Figure 5. 1881 U.S. Coast and Geodetic Survey Map Detail 10
Figure 6. 1946 Aerial Photograph ... 11
Figure 7. Photograph of Treatment Plant .. 12
Figure 8. Archaeological Testing Map .. 17
Figure 10. Bottle Finish/Neck ... 21
Introduction

This report presents the results of an archaeological testing program for a suspected small historic period cemetery site situated at Fort Baker, a part of the Golden Gate National Recreation Area, located near Sausalito in southern Marin County, California. The scope of work was designed to conform to both State of California (CEQA) and Federal historic preservation regulations (Section 106 of the National Historic Preservation Act, and the Archaeological Resources Protection Act).

The justification for and parameters of the testing program were laid out in the archaeological testing plan (Pastron and Staley 2013). The testing program was carried out under ARPA permit PWR-1979-13-CA-06 (GOGA), issued by the Pacific West Region of the National Park Service.

No evidence of the cemetery was found, and no further archaeological study is recommended.

Project Description

The suspected cemetery site is within the Area of Potential Effects (APE) for the Headworks and Facility Upgrade Project, an undertaking of the Sausalito—Marin City Sanitary District (SMCSM). The Project calls for several improvements to the water treatment plant to bring it into compliance with regulatory requirements, including the relocation of the access road to allow construction of new treatment facilities within the existing plant footprint. The relocated road would extend outside of the existing footprint, and would pass through part of the suspected cemetery site.

The treatment plant sits in a shallow cove on the bayshore, surrounded by very steep slopes. The suspected cemetery site is a small level area mid-slope adjacent to the treatment plant; the hillside below it has been eroded away into a cliff with a narrow rocky beach below.

Figures 1 and 2 depict the location of the Headworks and Facility Upgrade Project and of the suspected cemetery site in relation to the Project area.

The Archaeological APE consists of the areas in which the ground will be disturbed (Figure 3), and consists broadly of the footprint of the treatment plant itself and its access road. Vertical effects vary,
reaching up to 30 feet in some places. The testing area is defined as that portion of the Archaeological APE that overlaps with the suspected cemetery site.
Figure 1. Project Location Map.

Headworks and Facility Upgrade Project
Figure 2. Project Site Map with Area of Suspected Historic Cemetery

Headworks and Facility Upgrade Project
Figure 3. Area of Potential Effects (APE) Map (courtesy Tetra Tech)

Headworks and Facility Upgrade Project
Background

The Sailors Cemetery

According to historical documents, an informal cemetery was established somewhere in the vicinity of the Project site to receive the remains of sailors who died while serving on ships anchored in the Bay. The earliest record that has been found so far, in an 1880 history of Marin County, describes the cemetery and its location:

Some distance south of the site of old Saucelito, on the brow of a hill overlooking the bay, there is an enclosure about forty feet square containing, perhaps, a dozen graves of seamen (Munro-Fraser 1880:390).

The cemetery may also have served as a general burying ground for Sausalito residents: an early settler of Sausalito, who died in 1863, was later reported to have been buried “on the Government reservation, near the tide gauge” (Anon 1895). The bodies and grave markers of two sailors, the earlier of whom had died in 1850, were moved from an unspecified location within Fort Baker to the cemetery on Mare Island in 1916 (Sharpe 1916:6). Munro-Fraser had identified these sailors by name as having been being buried in the Sailors Cemetery. However, no mention has been made of the removal of any other burials from Fort Baker.

Local memory of the cemetery persisted through the mid-twentieth century, but the cemetery seems to have disappeared from public consciousness by the late twentieth century. In the 1980s or early 1990s, a member of the Sausalito Historical Society came upon the description of the cemetery while reading the 1880 history of Marin County, and various members of the Society undertook the task of re-locating the cemetery. As part of the search, Phil Frank interviewed longtime Sausalito residents, who described where they remembered the “Old Sailors’ Graveyard” as having been in the 1920s. In December 1994, following their directions, Mr. Frank identified the top of a trail near the stop sign at Alexander Avenue and East Road and followed it down to the area now thought to be the cemetery site.
History of Land Use and Occupation of the Project Site

As the Project site is located along a generally unsettled stretch of coastland, until the mid-twentieth century human use was generally limited to transient activities and infrastructure designed to support activities at some distance from the Project site.

The Project site was conveyed to William Richardson in 1838 as part of Rancho Sausalito; prior to that time it might have seen transient use by the Coast Miwok as part of coastal fishing or foraging activities. During the next thirty years, the Project site and the area around it was primarily used for grazing cattle, which destroyed native vegetation and increased site visibility (Figure 4). The erosion rate may have increased at this time.

In 1867, when the Lime Point Military Reservation was established, a post-and-pole fence was constructed at the northern edge of the reservation, separating the military land from the rancho land immediately north of it. Additionally, granite posts were placed at the angles of the boundary line (National Park Service 2005:8). These markers were near, but outside, the Project area.

The U.S. Coast and Geodetic Survey constructed an automatic tide gauge station in February 1877 in the cove where the treatment plant now sits (Smith 2002:1). The station consisted of a pier extending from the beach out into the water, at the end of which was the tide gauge itself (Figure 5). Tide heights were measured against a tide staff, which was in turn keyed to two benchmarks placed on shore whose elevations were known. One of these benchmarks, a copper pin, is still present in a rock outcropping about 100 feet south of the treatment plant (National Ocean Service 2004:3). The gauge and staff were moved from their original pier to a new, adjacent pier in 1881 after it was determined that the old pier had become unsafe. Data collection at the station in the cove was discontinued in 1897 when a new station was built across the Golden Gate at the Presidio (Smith 2002:1), but the pier and the tide gauge remained a local landmark for many decades.

East Road was constructed in 1901, passing near the Project site and providing overland access. The road was originally 18 feet wide but was expanded in 1945 (National Park Service 2005:10, 37). A wood entrance gate was built in 1901 at the boundary between the Reservation and Sausalito, just north of the Project area, and a post-and-pole fence was built on the cliff side of the road from this entrance gate south to Battery Cavallo in 1905 (National Park Service 2005:10, 56), separating the Project area from the road. The 1901 entrance gate was replaced in 1903 with a more substantial brick structure ornamented with canons, stacked cannonballs, and cast iron finials (National Park Service 2005:18).

In 1937, the Army replaced the old tide gauge station with a mine dispersion pier in the cove (Figure 6), at which mine-planting vessels were berthed in the 1930s and 1940s (National Park Service 2005:23, 35). The dispersion pier remained in place until the wastewater treatment plant was built.
Figure 4. 1850 U.S. Coast Survey Map Detail
Headworks and Facility Upgrade Project

North Side of the Entrance to San Francisco Bay. A.F. Rogers, U.S.C.S., San Francisco
Figure 6. 1946 Aerial Photograph

Headworks and Facility Upgrade Project
SAUSALITO-MARIN CITY SANITARY DISTRICT, MARIN COUNTY, CALIFORNIA

This unique primary treatment plant has a capacity of 2.0 million gallons per day and occupies an area within an 85 ft. diameter circle. Special problems of plant location resulted in this unusual integrated design with the clarifier above the digester. This plant, completed in 1953, cost only $165,000 to construct.

Courtesy of Tetra Tech

Figure 7. Photograph of Treatment Plant
Headworks and Facility Upgrade Project
In 1953, a wastewater treatment plant was constructed near the Project area, replacing the dispersion pier. In its original format, the plant consisted of an office, an access road, a main structure containing primary sedimentation tanks and a filter building, and a 20-inch-diameter outfall line that emptied 400 feet offshore (Rudo 1981). While the office was mid-slope near East Road, the main structure was located within tidal waters (Figure 7). The treatment plant was expanded in 1987 to include secondary treatment facilities adjacent to the primary facility along the beach, a sludge thickener, and a secondary digester (Sausalito-Marin City Sanitary District 2013). A third major upgrade was implemented in 1992, when four sand filters were installed. Other minor upgrades have occurred since then, largely without earth disturbance (Sausalito-Marin City Sanitary District 2013).

Previous Studies in the Vicinity of the Project Area

Archaeological Studies

The entirety of the East Fort Baker site—approximately 260 acres of Fort Baker situated to the east of highway 101—was surveyed in 2001 by the Anthropological Studies Center (Stewart et al. 2001). The archaeologists examined the area where the cemetery was reported to be located, but found no evidence of it and theorized that perhaps it had been destroyed when the treatment plant was built in the early twentieth century. A brick feature, currently in pieces on the beach below the Project site, was identified as belonging to a series of *in situ* foundations further upslope from the Project area and thought to relate to the 1903 brick entry gate on East Road. This brick feature was intact within the suspected cemetery site in 1994 and does not appear to actually be associated with the entry gate upslope. No evidence of indigenous resources were observed anywhere within the East Fort Baker site.

In February 2013, a Phase I cultural resources evaluation was carried out for the Headworks and Facility Upgrade Project (Pastron and Touton 2013). The scope of work included extensive archival research, consultation with the Sausalito Historical Society, and performance of a pedestrian archaeological surface survey. The purpose of the Phase I investigations was to determine whether the historic cemetery was present on site, what its likely location and characteristics would be, and what effect the Project would have on it.

The Phase I investigation produced mixed results. Although oral histories placed the cemetery within the vicinity of the Project area, no archaeological evidence of it was observed. Additionally, geological and historical evidence suggested that, as the shoreline is prone to heavy erosion, the landforms that existed at the time of the cemetery’s founding may not have survived intact.
Geotechnical Studies

Although no geotechnical study has been completed within the Project area itself, a recent study investigated the geotechnical conditions surrounding the District Residence located within the treatment plant campus but significantly south of the flat suspected cemetery area (Herzog 2013). As part of the study, two test borings were drilled downslope of the residence, at a similar elevation and mid-slope position as the flat area. However, the borings were placed under an elevated deck attached to a structure whose foundation required excavation into bedrock on the upslope side and placement of fill on the downslope side, limiting comparison with soil conditions within the flat suspected cemetery area. The borings were placed at nearly identical elevations approximately 60 feet apart.

Boring 1 contained soft, moist, red-brown gravelly clay from 0-3 feet, at which point bedrock (brown greenstone) was encountered. Boring 2 contained soft, moist, orange-brown gravelly clay from 0-2 feet, red-brown sandy clay from 2-4 feet, and medium stiff orange-brown gravelly clay from 4-5.5 feet. The latter clay was identified as colluvium, while all other soils were identified as fill. Bedrock (orange-brown greenstone) was encountered at 5.5 feet. The report concluded that “the downslope portion of the residence is underlain by weak fills and native soils which are subject to differential settlement and downslope creep movement” (Herzog 2013:4).
Testing Program

As detailed in the archaeological testing plan, the principal objectives of the testing program were to identify whether portions of the historic cemetery are present within the portion of the Project footprint nearest to and overlapping with the suspected cemetery site. If archaeological remains associated with the cemetery were encountered, the testing plan further aimed to establish the boundaries—both horizontal and vertical—of the overlap between the Project area and the cemetery and to create a preliminary evaluation of the cemetery’s significance.

Personnel Qualifications

The archaeological team that carried out the testing program consisted of Principal Investigator Allen G. Pastron, Ph.D.; Field Director Michelle Touton Staley, M.A.; osteologist Anna C. Engberg, MSc.; and technicians Austen Wianecki, B.A., and Elise Christensen, B.A.

Dr. Pastron received his doctorate in Anthropology from the University of California, Berkeley, and has 40 years of professional experience in Bay Area archaeology. Ms. Staley received her M.A. in Anthropological Sciences from Stanford University and has 9 years of experience in Bay Area archaeology. Ms. Engberg received her MSc. in Human Osteology and Funerary Archaeology from the University of Sheffield; she has 15 years of experience in Bay Area archaeology and 10 years of experience in human osteology.

Dr. Pastron, Ms. Staley, and Ms. Engberg all meet Secretary of the Interior standards for professional archaeologists.

Testing Area

Current construction plans call for up to 30 feet of excavation within the southernmost portion of the flat suspected cemetery area. Additionally, the central portion of the flat area will be subject to excavation of up to 4 feet for road sloping and tiebacks. The northernmost portion of the flat area is outside of the APE and will not be impacted by the Project.
Burials in a formal cemetery would be expected at a depth of approximately 5-7 feet, but in an informal cemetery burials may be found at shallower depths. Additionally, although the current elevation of the flat area is probably comparable to its historic elevation, it has been subject both to erosion and to deposition of eroded soils from further upslope. Accordingly, if human remains are present within the Project area, they may be located anywhere within the uppermost 8 feet.

The testing area was therefore defined as the upper 4 feet within the central portion and the upper 8 feet of the southern portion of the site, as depicted on Figure 2. As the project would not impact the northern portion of the suspected cemetery area, it was excluded from the testing area.

Testing Methods

Geotechnical testing elsewhere within the wastewater treatment plant property had indicated that bedrock may be as shallow as a few feet below surface. As the depth of bedrock within the testing area was unknown, the archaeological testing plan outlined two alternate testing strategies.

Both strategies began with the placement of three augers to determine the depth of bedrock at various points within the testing area. If bedrock was found to be less than three feet below surface, a formal excavation unit and a series of shovel test pits would be placed. If bedrock was found to be deeper than three feet, a series of secondary augers would instead be placed, as formal excavation units and shovel test pits are impractical for testing lower depths.

The three primary augers determined that bedrock was greater than three feet below the surface, so five secondary augers were placed (Figure 8). Although the ideal locations of the primary and secondary augers were detailed in the testing plan, field conditions consisting of the steepness and instability of portions of the testing area, the locations of sloping tree trunks and roots, and the inundation of a portion of the testing area required relocation of almost all augers. The new locations, as determined by the Field Director, were designed as near as possible to randomly sample the entire testing area given the locational constraints.

Prior to testing, the archaeological team removed all brush and shrubs from within the testing area, pulling them out by the roots where possible. Accumulated loose organic materials were brushed away from each auger location to prevent materials from falling into the auger hole and contaminating the results.

All augers were bored by hand with a 4”-diameter bucket. Excavation proceeded in arbitrary 4 levels until further progress was refused, either by bedrock or by a shallower impenetrable obstacle. Detailed notes of the location, depth, and findings of each auger were made on Auger Records, and photographs were taken of each auger and of the testing area as a whole.
Figure 8. Archaeological Testing Map

= Approximate area of excavation
= Area of suspected Historic cemetery
= Southern portion of testing area (impacts to 30 feet)
= Central portion of testing area (impacts to 4 feet)
= Datum (top of southernmost mapped iron pipe)
= Obstacle to testing

Auger Locations

<table>
<thead>
<tr>
<th>Auger</th>
<th>Feet from Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East</td>
</tr>
<tr>
<td>P-1</td>
<td>-5.0</td>
</tr>
<tr>
<td>P-2</td>
<td>15.0</td>
</tr>
<tr>
<td>P-3</td>
<td>2.5</td>
</tr>
<tr>
<td>S-1</td>
<td>-2.5</td>
</tr>
<tr>
<td>S-2</td>
<td>5.22</td>
</tr>
<tr>
<td>S-3</td>
<td>16.2</td>
</tr>
<tr>
<td>S-4</td>
<td>11.9</td>
</tr>
<tr>
<td>S-5</td>
<td>4.83</td>
</tr>
</tbody>
</table>
Figure 9. Auger Profiles

Headworks and Facility Upgrade Project
All excavated soils were screened through ¼” mesh to ensure that any bone fragments, buttons, or other small archaeological materials are recovered. One artifact was observed and discarded; no materials were collected.

A datum was established at the top of one of the iron stakes recorded within the suspected cemetery area, which point has previously been recorded in all three dimensions by prior surveys of the wastewater treatment plant property. All measurements were made in relation to that datum. Initially, measurements were made in Cartesian coordinates (feet east and north of the datum), but later measurements were made in polar coordinates (feet away from the datum along a line a certain number of degrees from north) for expediency. As the expected resource dates from the historic era, measurements were made in Imperial units (inches and feet).

At the conclusion of the testing program, all augers were backfilled by hand.

Results

The augers revealed a general stratigraphy that was relatively uniform throughout the testing area, with actual depths varying greatly due to the sloping of the underlying landform (Figure 9). The observed soil conditions closely matched those recorded in Boring 2 of the Herzog geotechnical study (Herzog 2013).

Stratum I, which covered the whole testing area, consisted of loose leaf litter and other organic materials in varying degrees of decomposition.

Stratum II consisted of a loosely compacted auburn clayey silt with many roots and rootlets, some (10-20%) small (<1cm) angular and subangular gravels, and few larger (1-5cm) rocks. This stratum occasionally contained very few rounded pebbles or bits of shell. In some augers, there was evidence of insect-related bioturbation within this stratum. Stratum II is consistent with Herzog’s “red-brown sandy clay” fill, which was encountered from 24”-48” in Boring 2.

Stratum III consisted of a compact yellow-brown silty clay with few (5%) angular gravels mottled with red and gray pockets. Towards the bottom of this stratum, which immediately overlaid the bedrock, gravel content increased. The gravel appeared to be pieces of decomposed bedrock. Stratum III is consistent with Herzog’s “medium-stiff orange-brown gravelly clay” colluvium, which was encountered from 48”-66” in Boring 2.

The depths at which each stratum was encountered within each auger are given in Table 1.
Although the surface of the testing area contained modern and recent (1960s-2010s) trash, generally food-related, only one subsurface artifact was observed. This artifact was a clear bottle finish/neck encountered at -40.5” below datum (24” below surface) in secondary auger S-4, corresponding to the interface between Stratum II and Stratum III. The artifact had two mold seams running up the neck to a tooled “club sauce” finish (Figure 10), indicating it was probably made between 1870 and 1930. It was photographed and discarded on site.

Based on these findings, it appears that Stratum III is the native soil created by decomposing bedrock and Stratum II is a fill soil placed on site sometime after 1870. The origin of the fill is unknown, but possible candidates include the construction of the tide gauge station in 1877, construction of East Road in 1901, construction of the dispersion pier in 1937, widening of East Road in 1945, or the construction of the treatment plant in 1953.

As the cemetery was in use at least as early as 1850, it would therefore have been dug into Stratum III if it had ever been present in this location, and then later covered up by Stratum II. The three augers that reached bedrock found Stratum III to be 32”, 41”, and 33” thick, respectively.

<table>
<thead>
<tr>
<th>Auger</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>S-1</th>
<th>S-2</th>
<th>S-3</th>
<th>S-4</th>
<th>S-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Depth BD</td>
<td>-4.5”</td>
<td>-24”</td>
<td>-20.5”</td>
<td>-9”</td>
<td>-16”</td>
<td>-26.5”</td>
<td>-26.5”</td>
<td>-18”</td>
</tr>
<tr>
<td>Strat I</td>
<td>0-4”</td>
<td>0-8”</td>
<td>0-4”</td>
<td>-2-0”</td>
<td>--</td>
<td>0-4”</td>
<td>0-4”</td>
<td>0-4”</td>
</tr>
<tr>
<td>Strat II</td>
<td>4-12”</td>
<td>8-48”</td>
<td>4-44”</td>
<td>0-28”</td>
<td>0-8”</td>
<td>4-23”</td>
<td>4-28”</td>
<td>4-32”</td>
</tr>
<tr>
<td>Strat III</td>
<td>12-41”</td>
<td>48-80”</td>
<td>44-85”</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>28”-42”</td>
<td>32”-64”</td>
</tr>
<tr>
<td>Ending Depth BD</td>
<td>-45.5”</td>
<td>-104”</td>
<td>-105.5”</td>
<td>-37”</td>
<td>-24”</td>
<td>-49.5”</td>
<td>-68.5”</td>
<td>-82”</td>
</tr>
<tr>
<td>Cause of Rejection</td>
<td>Saturation</td>
<td>Bedrock</td>
<td>Bedrock</td>
<td>Rock(s)</td>
<td>Rocks</td>
<td>Rock(s)</td>
<td>Rock(s)</td>
<td>Bedrock</td>
</tr>
</tbody>
</table>
Figure 10. Bottle Finish/Neck
Headworks and Facility Upgrade Project
Recommendations

The testing plan did not identify any remains of a historic cemetery within the testing area, nor did it find evidence indicating the likely presence of any other significant archaeological resource. Indeed, if Stratum III was the historical surface at the time the cemetery was established, bedrock within the testing area would have been too close to the surface to make burial in the area prudent.

While the historical and ethnographic evidence does indicate the presence of a cemetery within the vicinity of the wastewater treatment plant, it does not appear to be present within the testing area. It is possible the cemetery—which appears to have functioned not just as a burial place for sailors who died in harbor but also may have served as the first burying ground for residents of Old Saucelito—has been lost to erosion, or that it was located elsewhere along the shoreline. One possible candidate is the promontory that marks the south end of the cove, which more closely matches the historical description of the cemetery’s having been located “on the brow of a hill.”

Wherever the cemetery may be—eroded away, removed, or located elsewhere—it does not appear to be present within the testing area and will not be impacted by the Project. Additionally, the testing program did not find compelling evidence that any other significant archaeological resource is present. Therefore, we recommend a finding that no historic properties are present within the Project’s APE (other than the treatment plant itself), and recommend no further archaeological investigation.

Disposition of Testing Materials

No artifacts or samples were collected; testing materials consist of field notes, maps, and photographs only. Copies of all of these field records will be provided to NPS along with copies of this report; the originals will remain in the possession of Archeo-Tec.
Works Cited

Anon

Herzog, Craig

2013 *RE: Geotechnical Investigation, Foundation Stabilization, 1 East Road, Sausalito, California.* Report to Sausalito-Marin City Sanitary District from Herzog Geotechnical Consulting Engineers, Mill Valley, CA.

Munro-Fraser, J.P.

1880 *History of Marin County, California.* San Francisco, Alley, Bowen & Co.

National Ocean Service

2004 Published Bench Mark Sheet for 9414806 SAUSALITO, SAN FRANCISCO BAY CALIFORNIA. http://tidesandcurrents.noaa.gov/benchmarks/9414806.html.

National Park Service

2005 *Cultural Landscape Report for Fort Baker, Golden Gate National Recreation Area, Fort Baker, Barry and Cronkhite Historic District, Marin County, California.*
Pastron, Allen G., and Michelle T. Staley

Pastron, Allen G., and Michelle Touton

Rudo, Mark Ogden

Sausalito-Marin City Sanitary District

Sharpe, Henry G.

Smith, Raymond A.

Stewart, Suzanne, Jack Meyer, and Michael Newland

Thompson, Laurie